Gaschromatographen – Die feinsten Spürnasen im OELCHECK-Labor

Erscheinungsjahr: 2020

 

Ist ein gebrauchtes Motoröl mit Kraftstoff belastet? Wurde ein Motoröl mit Biodiesel oder Pflanzenöl zu stark verunreinigt? Wurde ein falscher Kraftstoff getankt? Ist Kühlmittel in der Ölprobe? Zeigt die DGA-Untersuchung (dissolved gas analysis) eines Transformatorenöls eine Gaszusammensetzung, die auf eine baldige Störung des Trafos hinweist?


Mit solchen Fragen werden die OELCHECK-Tribologen täglich konfrontiert. Für eine Beantwortung liefert die Gaschromatographie (GC) exakte Informationen, denn mit ihr können Stoffgemische sowohl quantitativ wie auch qualitativ analysiert werden. 
Voraussetzung für eine Analyse ist, dass die meist flüssigen Proben durch Erhitzen zersetzungsfrei gasförmig werden oder bereits gasförmig sind. 
Für die Analyse von bis zu 2.000 Proben, die täglich untersucht werden, sind im OELCHECK-Labor vier Gaschromatographen installiert. Obwohl sie für unterschiedliche Zwecke eingerichtet wurden, arbeiten sie nach einem einheitlichen Prinzip. Die zu untersuchende Probe wird dem Gaschromatographen über einen Injektor zugeführt. In ihm wird die Probe verdampft. Die jetzt gasförmigen Komponenten werden in eine Kapillarsäule injiziert, die in einem thermisch regelbaren Ofen montiert ist. Die Gase durchströmen ein langes, dünnes, Glasröhrchen mit einem Innendurchmesser von unter einem mm, aber einer Länge von bis zu 30 m, das im Inneren mit einem dünnen Film, der stationären Phase, beschichtet ist. Diese Trennsäule wird permanent von einem Trägergas wie Wasserstoff oder Argon, der mobilen Phase, durchströmt. Die aus dem Injektor kommenden gasförmigen Komponenten der Probe verweilen in Abhängigkeit von ihrer Struktur und der im Ofenraum herrschenden Temperatur unterschiedlich lange an der stationären Phase der Säule. Beim Verlassen der Säule registriert ein Detektor die einzelnen Komponenten. Sie werden in einem Chromatogramm aufgezeichnet und können entsprechend ihrer Siedetemperatur bestimmten Ausgangsstoffen zugeordnet werden. Je später eine Komponente am Säulenausgang detektiert wird, desto höher ist ihr Siedepunkt. Die Fläche unter einem Peak des Chromatogramms verhält sich wiederum proportional zum Anteil der Komponente in der Mischung.